direct product, metabelian, supersoluble, monomial
Aliases: C3×C32⋊2D8, C33⋊4D8, C12.96S32, (C3×D12)⋊1C6, D12⋊2(C3×S3), (C3×D12)⋊1S3, C32⋊4(C3×D8), C12.25(S3×C6), C32⋊4C8⋊8C6, (C3×C12).109D6, (C32×D12)⋊1C2, (C32×C6).18D4, C32⋊10(D4⋊S3), C6.27(D6⋊S3), (C32×C12).1C22, C4.8(C3×S32), C3⋊2(C3×D4⋊S3), C6.7(C3×C3⋊D4), (C3×C6).17(C3×D4), (C3×C12).35(C2×C6), (C3×C32⋊4C8)⋊7C2, C2.3(C3×D6⋊S3), (C3×C6).82(C3⋊D4), SmallGroup(432,418)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C32⋊2D8
G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 496 in 134 conjugacy classes, 36 normal (16 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C62, D4⋊S3, C3×D8, S3×C32, C32×C6, C3×C3⋊C8, C32⋊4C8, C3×D12, C3×D12, D4×C32, C32×C12, S3×C3×C6, C32⋊2D8, C3×D4⋊S3, C3×C32⋊4C8, C32×D12, C3×C32⋊2D8
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊D4, C3×D4, S32, S3×C6, D4⋊S3, C3×D8, D6⋊S3, C3×C3⋊D4, C3×S32, C32⋊2D8, C3×D4⋊S3, C3×D6⋊S3, C3×C32⋊2D8
(1 11 46)(2 12 47)(3 13 48)(4 14 41)(5 15 42)(6 16 43)(7 9 44)(8 10 45)(17 33 31)(18 34 32)(19 35 25)(20 36 26)(21 37 27)(22 38 28)(23 39 29)(24 40 30)
(1 11 46)(2 47 12)(3 13 48)(4 41 14)(5 15 42)(6 43 16)(7 9 44)(8 45 10)(17 33 31)(18 32 34)(19 35 25)(20 26 36)(21 37 27)(22 28 38)(23 39 29)(24 30 40)
(1 46 11)(2 12 47)(3 48 13)(4 14 41)(5 42 15)(6 16 43)(7 44 9)(8 10 45)(17 33 31)(18 32 34)(19 35 25)(20 26 36)(21 37 27)(22 28 38)(23 39 29)(24 30 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 24)(9 33)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(25 42)(26 41)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)
G:=sub<Sym(48)| (1,11,46)(2,12,47)(3,13,48)(4,14,41)(5,15,42)(6,16,43)(7,9,44)(8,10,45)(17,33,31)(18,34,32)(19,35,25)(20,36,26)(21,37,27)(22,38,28)(23,39,29)(24,40,30), (1,11,46)(2,47,12)(3,13,48)(4,41,14)(5,15,42)(6,43,16)(7,9,44)(8,45,10)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,46,11)(2,12,47)(3,48,13)(4,14,41)(5,42,15)(6,16,43)(7,44,9)(8,10,45)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,33)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)>;
G:=Group( (1,11,46)(2,12,47)(3,13,48)(4,14,41)(5,15,42)(6,16,43)(7,9,44)(8,10,45)(17,33,31)(18,34,32)(19,35,25)(20,36,26)(21,37,27)(22,38,28)(23,39,29)(24,40,30), (1,11,46)(2,47,12)(3,13,48)(4,41,14)(5,15,42)(6,43,16)(7,9,44)(8,45,10)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,46,11)(2,12,47)(3,48,13)(4,14,41)(5,42,15)(6,16,43)(7,44,9)(8,10,45)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,33)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43) );
G=PermutationGroup([[(1,11,46),(2,12,47),(3,13,48),(4,14,41),(5,15,42),(6,16,43),(7,9,44),(8,10,45),(17,33,31),(18,34,32),(19,35,25),(20,36,26),(21,37,27),(22,38,28),(23,39,29),(24,40,30)], [(1,11,46),(2,47,12),(3,13,48),(4,41,14),(5,15,42),(6,43,16),(7,9,44),(8,45,10),(17,33,31),(18,32,34),(19,35,25),(20,26,36),(21,37,27),(22,28,38),(23,39,29),(24,30,40)], [(1,46,11),(2,12,47),(3,48,13),(4,14,41),(5,42,15),(6,16,43),(7,44,9),(8,10,45),(17,33,31),(18,32,34),(19,35,25),(20,26,36),(21,37,27),(22,28,38),(23,39,29),(24,30,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,24),(9,33),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(25,42),(26,41),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)]])
63 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | ··· | 3H | 3I | 3J | 3K | 4 | 6A | 6B | 6C | ··· | 6H | 6I | 6J | 6K | 6L | ··· | 6AA | 8A | 8B | 12A | 12B | 12C | ··· | 12N | 24A | 24B | 24C | 24D |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | ··· | 3 | 3 | 3 | 3 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | ··· | 6 | 8 | 8 | 12 | 12 | 12 | ··· | 12 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 12 | 12 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 2 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | ··· | 12 | 18 | 18 | 2 | 2 | 4 | ··· | 4 | 18 | 18 | 18 | 18 |
63 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | ||||||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D4 | D6 | D8 | C3×S3 | C3⋊D4 | C3×D4 | S3×C6 | C3×D8 | C3×C3⋊D4 | S32 | D4⋊S3 | D6⋊S3 | C3×S32 | C32⋊2D8 | C3×D4⋊S3 | C3×D6⋊S3 | C3×C32⋊2D8 |
kernel | C3×C32⋊2D8 | C3×C32⋊4C8 | C32×D12 | C32⋊2D8 | C32⋊4C8 | C3×D12 | C3×D12 | C32×C6 | C3×C12 | C33 | D12 | C3×C6 | C3×C6 | C12 | C32 | C6 | C12 | C32 | C6 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 1 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 8 | 1 | 2 | 1 | 2 | 2 | 4 | 2 | 4 |
Matrix representation of C3×C32⋊2D8 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 0 | 1 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
10 | 59 | 0 | 0 | 0 | 0 |
0 | 22 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
10 | 59 | 0 | 0 | 0 | 0 |
54 | 63 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,0,0,0,0,0,59,22,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[10,54,0,0,0,0,59,63,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C3×C32⋊2D8 in GAP, Magma, Sage, TeX
C_3\times C_3^2\rtimes_2D_8
% in TeX
G:=Group("C3xC3^2:2D8");
// GroupNames label
G:=SmallGroup(432,418);
// by ID
G=gap.SmallGroup(432,418);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,1011,514,80,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations