Copied to
clipboard

G = C3×C322D8order 432 = 24·33

Direct product of C3 and C322D8

direct product, metabelian, supersoluble, monomial

Aliases: C3×C322D8, C334D8, C12.96S32, (C3×D12)⋊1C6, D122(C3×S3), (C3×D12)⋊1S3, C324(C3×D8), C12.25(S3×C6), C324C88C6, (C3×C12).109D6, (C32×D12)⋊1C2, (C32×C6).18D4, C3210(D4⋊S3), C6.27(D6⋊S3), (C32×C12).1C22, C4.8(C3×S32), C32(C3×D4⋊S3), C6.7(C3×C3⋊D4), (C3×C6).17(C3×D4), (C3×C12).35(C2×C6), (C3×C324C8)⋊7C2, C2.3(C3×D6⋊S3), (C3×C6).82(C3⋊D4), SmallGroup(432,418)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C3×C322D8
C1C3C32C3×C6C3×C12C32×C12C32×D12 — C3×C322D8
C32C3×C6C3×C12 — C3×C322D8
C1C6C12

Generators and relations for C3×C322D8
 G = < a,b,c,d,e | a3=b3=c3=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=b-1, be=eb, dcd-1=ece=c-1, ede=d-1 >

Subgroups: 496 in 134 conjugacy classes, 36 normal (16 characteristic)
C1, C2, C2, C3, C3, C3, C4, C22, S3, C6, C6, C6, C8, D4, C32, C32, C32, C12, C12, C12, D6, C2×C6, D8, C3×S3, C3×C6, C3×C6, C3×C6, C3⋊C8, C24, D12, C3×D4, C33, C3×C12, C3×C12, C3×C12, S3×C6, C62, D4⋊S3, C3×D8, S3×C32, C32×C6, C3×C3⋊C8, C324C8, C3×D12, C3×D12, D4×C32, C32×C12, S3×C3×C6, C322D8, C3×D4⋊S3, C3×C324C8, C32×D12, C3×C322D8
Quotients: C1, C2, C3, C22, S3, C6, D4, D6, C2×C6, D8, C3×S3, C3⋊D4, C3×D4, S32, S3×C6, D4⋊S3, C3×D8, D6⋊S3, C3×C3⋊D4, C3×S32, C322D8, C3×D4⋊S3, C3×D6⋊S3, C3×C322D8

Smallest permutation representation of C3×C322D8
On 48 points
Generators in S48
(1 11 46)(2 12 47)(3 13 48)(4 14 41)(5 15 42)(6 16 43)(7 9 44)(8 10 45)(17 33 31)(18 34 32)(19 35 25)(20 36 26)(21 37 27)(22 38 28)(23 39 29)(24 40 30)
(1 11 46)(2 47 12)(3 13 48)(4 41 14)(5 15 42)(6 43 16)(7 9 44)(8 45 10)(17 33 31)(18 32 34)(19 35 25)(20 26 36)(21 37 27)(22 28 38)(23 39 29)(24 30 40)
(1 46 11)(2 12 47)(3 48 13)(4 14 41)(5 42 15)(6 16 43)(7 44 9)(8 10 45)(17 33 31)(18 32 34)(19 35 25)(20 26 36)(21 37 27)(22 28 38)(23 39 29)(24 30 40)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23)(2 22)(3 21)(4 20)(5 19)(6 18)(7 17)(8 24)(9 33)(10 40)(11 39)(12 38)(13 37)(14 36)(15 35)(16 34)(25 42)(26 41)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)

G:=sub<Sym(48)| (1,11,46)(2,12,47)(3,13,48)(4,14,41)(5,15,42)(6,16,43)(7,9,44)(8,10,45)(17,33,31)(18,34,32)(19,35,25)(20,36,26)(21,37,27)(22,38,28)(23,39,29)(24,40,30), (1,11,46)(2,47,12)(3,13,48)(4,41,14)(5,15,42)(6,43,16)(7,9,44)(8,45,10)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,46,11)(2,12,47)(3,48,13)(4,14,41)(5,42,15)(6,16,43)(7,44,9)(8,10,45)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,33)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)>;

G:=Group( (1,11,46)(2,12,47)(3,13,48)(4,14,41)(5,15,42)(6,16,43)(7,9,44)(8,10,45)(17,33,31)(18,34,32)(19,35,25)(20,36,26)(21,37,27)(22,38,28)(23,39,29)(24,40,30), (1,11,46)(2,47,12)(3,13,48)(4,41,14)(5,15,42)(6,43,16)(7,9,44)(8,45,10)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,46,11)(2,12,47)(3,48,13)(4,14,41)(5,42,15)(6,16,43)(7,44,9)(8,10,45)(17,33,31)(18,32,34)(19,35,25)(20,26,36)(21,37,27)(22,28,38)(23,39,29)(24,30,40), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23)(2,22)(3,21)(4,20)(5,19)(6,18)(7,17)(8,24)(9,33)(10,40)(11,39)(12,38)(13,37)(14,36)(15,35)(16,34)(25,42)(26,41)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43) );

G=PermutationGroup([[(1,11,46),(2,12,47),(3,13,48),(4,14,41),(5,15,42),(6,16,43),(7,9,44),(8,10,45),(17,33,31),(18,34,32),(19,35,25),(20,36,26),(21,37,27),(22,38,28),(23,39,29),(24,40,30)], [(1,11,46),(2,47,12),(3,13,48),(4,41,14),(5,15,42),(6,43,16),(7,9,44),(8,45,10),(17,33,31),(18,32,34),(19,35,25),(20,26,36),(21,37,27),(22,28,38),(23,39,29),(24,30,40)], [(1,46,11),(2,12,47),(3,48,13),(4,14,41),(5,42,15),(6,16,43),(7,44,9),(8,10,45),(17,33,31),(18,32,34),(19,35,25),(20,26,36),(21,37,27),(22,28,38),(23,39,29),(24,30,40)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23),(2,22),(3,21),(4,20),(5,19),(6,18),(7,17),(8,24),(9,33),(10,40),(11,39),(12,38),(13,37),(14,36),(15,35),(16,34),(25,42),(26,41),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43)]])

63 conjugacy classes

class 1 2A2B2C3A3B3C···3H3I3J3K 4 6A6B6C···6H6I6J6K6L···6AA8A8B12A12B12C···12N24A24B24C24D
order1222333···33334666···66666···688121212···1224242424
size111212112···24442112···244412···121818224···418181818

63 irreducible representations

dim111111222222222244444444
type+++++++++-
imageC1C2C2C3C6C6S3D4D6D8C3×S3C3⋊D4C3×D4S3×C6C3×D8C3×C3⋊D4S32D4⋊S3D6⋊S3C3×S32C322D8C3×D4⋊S3C3×D6⋊S3C3×C322D8
kernelC3×C322D8C3×C324C8C32×D12C322D8C324C8C3×D12C3×D12C32×C6C3×C12C33D12C3×C6C3×C6C12C32C6C12C32C6C4C3C3C2C1
# reps112224212244244812122424

Matrix representation of C3×C322D8 in GL6(𝔽73)

100000
010000
0064000
0006400
000010
000001
,
100000
010000
001000
000100
0000072
0000172
,
100000
010000
00727200
001000
000010
000001
,
10590000
0220000
001000
00727200
000001
000010
,
10590000
54630000
0072000
001100
000010
000001

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[10,0,0,0,0,0,59,22,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[10,54,0,0,0,0,59,63,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

C3×C322D8 in GAP, Magma, Sage, TeX

C_3\times C_3^2\rtimes_2D_8
% in TeX

G:=Group("C3xC3^2:2D8");
// GroupNames label

G:=SmallGroup(432,418);
// by ID

G=gap.SmallGroup(432,418);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,197,1011,514,80,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽